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Normalizing flows (NFs) are end-to-end likelihood-based generative models for continuous data, and have recently re-
gained attention with encouraging progress on image generation. Yet in the video generation domain, where spatiotem-
poral complexity and computational cost are substantially higher, state-of-the-art systems almost exclusively rely on
diffusion-based models. In this work, we revisit this design space by presenting STARFlow-V, a normalizing flow-based
video generator with substantial benefits such as end-to-end learning, robust causal prediction, and native likelihood es-
timation. Building upon the recently proposed STARFlow, STARFlow-V operates in the spatiotemporal latent space with
a global-local architecture which restricts causal dependencies to a global latent space while preserving rich local within-
frame interactions. This eases error accumulation over time, a common pitfall of standard autoregressive diffusion model
generation. Additionally, we propose flow-score matching, which equips themodel with a light-weight causal denoiser to
improve the video generation consistency in an autoregressive fashion. To improve the sampling efficiency, STARFlow-V
employs a video-aware Jacobi iteration scheme that recasts inner updates as parallelizable iterations without breaking
causality. Thanks to the invertible structure, the same model can natively support text-to-video, image-to-video as well
as video-to-video generation tasks. Empirically, STARFlow-V achieves strong visual fidelity and temporal consistency
with practical sampling throughput relative to diffusion-based baselines. These results present the first evidence, to our
knowledge, that NFs are capable of high-quality autoregressive video generation, establishing them as a promising re-
search direction for building world models.
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1 Introduction

Deep generative modeling has advanced rapidly with breakthroughs across language (Achiam et al., 2023;
OpenAI, 2024a), images (Podell et al., 2023; Batifol et al., 2025; Wu et al., 2025), and videos (OpenAI,
2024b; Wan et al., 2025; DeepMind, 2025) domains. Among these modalities, video generation is uniquely
demanding: beyond high perceptual quality, models must capture rich spatiotemporal structure, remain
robust over long horizons, and often operate under causal constraints for streaming and interactive use. Such
capabilities are central not only to creative media (Ye et al., 2025; Yuan et al., 2025), but also to emerging
world models for gaming, simulation and embodied AI (Ha and Schmidhuber, 2018; Yang et al., 2023; Hu
et al., 2023; Google DeepMind, 2024; Hafner et al., 2025).

Recent scaling of data, model capacity, and compute has pushed video generation to new levels of fi-
delity (Yang et al., 2025; Kong et al., 2024; Kondratyuk et al., 2024; Yu et al., 2024; Wan et al., 2025;
Seawead et al., 2025; Gao et al., 2025). In this space, diffusion-based approaches (Ho et al., 2020; Rombach
et al., 2022; Peebles and Xie, 2023; Lipman et al., 2023; Esser et al., 2024) have emerged as the dominant
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Figure 1 Samples from STARFlow-V across three tasks. All videos are 480 p at 16 fps. Red boxes mark the conditioning
inputs. The same autoregressive architecture is used for all tasks with no task-specific modifications. Please find
more generated videos and comparisons in the released code https://github.com/apple/ml-starflow.
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backbone for text- and image-conditioned video synthesis, thanks to their strong empirical performance and
flexible conditioning mechanisms. Standard diffusion models are trained by corrupting frames with noise
drawn from a schedule and learning a denoiser that inverts this process one step at a time, which leads to an
iterative sampling procedure at inference. For offline generation this formulation works well, but the parallel
denoising of multiple frames is inherently non-causal: future frames can influence earlier ones, making it less
natural to apply in streaming or interactive settings that require strictly causal rollouts. Causally conditioned
and sequential diffusion variants (Chen et al., 2024a; Huang et al., 2025) mitigate some of these issues, but
still inherit the need to simulate noise at different timesteps and frames during training and can exhibit
train–test mismatch during long-horizon autoregressive generation.

In parallel, normalizing flows (NFs) (Rezende and Mohamed, 2015; Dinh et al., 2014, 2016) offer a dis-
tinct, likelihood-based alternative. NFs are continuous end-to-end generative models that provide exact
log-likelihood evaluation, non-iterative sampling, and native support for invertible feature mappings. After
an initial wave of work (Dinh et al., 2016; Kingma and Dhariwal, 2018), they received relatively less atten-
tion compared to diffusion models, but have recently regained interest with encouraging progress on image
generation (Zhai et al.; Gu et al., 2025; Zheng et al., 2025). In particular, STARFlow (Gu et al., 2025) shows
that parameterizing an “autoregressive normalizing flow” with a Transformer and operating in a latent space
allows flows to scale competitively in the high-resolution image domain. Yet, in the video domain—where
complexity and computational cost are substantially higher—state-of-the-art systems almost exclusively rely
on diffusion, and it remains unclear whether NFs can be practical for video.

In this work, we revisit this design space and introduce STARFlow-V, a normalizing-flow-based video gener-
ator that combines end-to-end training with causal, likelihood-based modeling. Building on STARFlow (Gu
et al., 2025), STARFlow-V operates in a spatiotemporal latent space with a global–local architecture: a com-
pact global latent sequence carries long-range temporal context, while local latent blocks preserve fine-grained
within-frame structure. By delegating temporal reasoning to this high-level space, the model mitigates the
accumulation of autoregressive errors that commonly plagues diffusion-based video generators. As observed
in TARFlow (Zhai et al., 2024), training flows on slightly perturbed data with a subsequent denoising step
can significantly improve robustness. Unlike existing methods (Zhai et al., 2024; Gu et al., 2025), we propose
flow-score matching, which learns a lightweight causal denoiser to enhance temporal consistency in video sce-
narios. To further improve efficiency, STARFlow-V employs a video-aware Jacobi-style update scheme that
recasts inner refinement steps as parallelizable iterations. Finally, owing to its invertible nature, the same
backbone naturally supports text-to-video (T2V), image-to-video (I2V), and video-to-video (V2V) generation
by simply changing the form of the conditioning signal.

Across all benchmarks, STARFlow-V attains visually coherent and temporally stable generations while main-
taining practical sampling speed relative to diffusion-based models. We believe this provides initial evidence
that NFs are capable of high-quality autoregressive video generation and potentially world models.

2 Background

2.1 Video GenerativeModels
Given N frames x1:N = (x1, . . . ,xN ) and optional conditioning C (e.g., text, image, audio, layout, camera),
video generative models seek to model the joint distribution of all frames p(x1:N | C) and sample novel
videos from the learned model. While earlier work explored GANs (Vondrick et al., 2016; Tulyakov et al.,
2018; Skorokhodov et al., 2022), VAEs (Babaeizadeh et al., 2018; Castrejon et al., 2019; Wu et al., 2021),
and discrete autoregressive models (Yan et al., 2021; Yu et al., 2024; Kondratyuk et al., 2024), the field has
largely converged on diffusion-based methods Ho et al. (2022c,a). Spurred by the release of Sora (Brooks
et al., 2024), DiT-style approaches (Peebles and Xie, 2023) have shown strong generalization at scale (Gao
et al., 2025; Wan et al., 2025; DeepMind, 2025). A key distinction from prior paradigms is that training
of diffusion-based models is Not End-to-End : diffusion-based models corrupt frames with noise at randomly
sampled levels and train a denoiser to invert this process, optimizing an objective closely related to the lower
bound of log p(x1:N | C). This setup incurs high cost—especially for video—as each update supervises only
a single noise level. At inference time, one sample is generated by iteratively denoising from Gaussian noise.
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Diffusion-based video generation is typically non-causal: all frames are corrupted with noise and denoised in
parallel (Ho et al., 2022c). Yet many real-world applications demand causal, often interactive synthesis (e.g.,
online streaming, video games, robotics), where frames must be produced sequentially. Autoregressive (AR)
diffusion models (Chen et al., 2024a; Song et al., 2025; Yin et al., 2025)—a line of work that combines chain-
rule factorization with diffusion—aim to alleviate prior limitations by introducing asynchronous, frame-wise
noise schedules during training, modeling each conditional p(xn | x<n) as a diffusion process. Despite their
strengths, AR generation typically suffers from exposure bias: during training, models condition on ground-
truth contexts, whereas at inference they must rely on their own (imperfect) predictions. This train–test
mismatch compounds over time, degrading long-horizon video quality. The non–end-to-end nature of diffusion
training further exacerbates this gap, though recent efforts such as Self-Forcing (Huang et al., 2025) seek to
mitigate it via sequential post-training with distillation objectives. However, they are not readily applicable
in the pre-training stage on raw video data.

2.2 Autoregressive Normalizing Flows
Normalizing flows (NFs; Rezende and Mohamed, 2015; Dinh et al., 2014, 2016; Kingma and Dhariwal, 2018; Ho
et al., 2019) are likelihood-based generative models built from invertible transformations. Given a continuous
input x∼ pdata, x ∈ RD, an NF learns a bijection fθ : RD→ RD that maps data x to latents z = fθ(x).
Unlike diffusion models, NFs are trained end-to-end via a tractable maximum-likelihood objective derived
from the change-of-variables formula:

LNF(θ) = Ex

[
log p0

(
fθ(x)

)
+ log|det(Jfθ (x))|

]
, (2.1)

where the first term encourages mapping data to high-density regions of a simple prior p0 (e.g., standard
Gaussian), and the Jacobian term Jf accounts for the local volume change induced by fθ, preventing collapse.
Once trained, sampling is immediate via inversion: draw z∼p0(z) and set x = f−1

θ (z). Historically, however,
NFs have been viewed as less competitive than diffusion models due to architectural rigidity and training
instability (Dinh et al., 2016).

Recently, TARFlow (Zhai et al.) and its scalable extension, STARFlow (Gu et al., 2025), have revisited
normalizing flows as next-generation backbones for generative modeling. Both methods instantiate autore-
gressive flows (AFs) (Kingma et al., 2016; Papamakarios et al., 2017)—NFs whose invertible transformations
are parameterized autoregressively—and use causal Transformer blocks, in the style of LLMs, as their primary
building units. Formally, STARFlow (Gu et al., 2025) stacks T autoregressive flow blocks with alternating di-
rections, where each block applies an affine transform whose parameters are predicted by a causal Transformer
under a (self-exclusive) causal mask m:

z =
[
x− µθ

(
x⊙m

)]
/σθ

(
x⊙m

)
, σθ(·) > 0, (2.2)

where x, z are the input and output of each block, ⊙ denotes the Hadamard product. As shown in
STARFlow (Gu et al., 2025), T ≥ 3 blocks suffice for universal density modeling where masks alternate
between left-to-right (→) and right-to-left (←) to capture bidirectional dependencies.

Despite STARFlow demonstrating competitive quality with state-of-the-art diffusion (Podell et al., 2023;
Esser et al., 2024) on large-scale text-to-image tasks, evidence for normalizing flows in video generation re-
mains sparse. To our best knowledge, the only prior NF-based video model is VideoFlow (Kumar et al., 2019),
which builds on Glow (Kingma and Dhariwal, 2018) and is constrained by limited capacity, low resolution,
and domain-specific settings. Compared to images, video generation is substantially more challenging for NFs
due to higher spatiotemporal dimensionality. Nevertheless, we argue that normalizing flows—exemplified by
STARFlow—are a natural fit for video modeling, especially in autoregressive settings.

3 STARFlow-V

We propose STARFlow-V, a novel paradigm for video generation based on normalizing flows. While inspired
by STARFlow (Gu et al., 2025), STARFlow-V is not a direct port to the video domain; it introduces several
architectural redesigns and algorithmic innovations tailored to spatiotemporal data. In what follows, we
present the architecture and its autoregressive formulation (Section 3.1), the training procedure (Section 3.2),
the inference pipeline (Section 3.3), and applications enabled by our model (Section 3.4).
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3.1 ProposedModel

For a video x ∈ RN×H×W×D, each frame xn is flattened to RHW×D, xn = (xn,1, . . . ,xn,HW ), and all
frames are concatenated into a sequence of NHW tokens. We operate in a compressed latent space using
a pretrained 3D causal VAE (Wan et al., 2025). STARFlow-V models the joint distribution pθ(x) via an
invertible mapping fθ implemented as autoregressive flows (Equation (2.2)). Following Gu et al. (2025), we
use a deep–shallow decomposition fθ = fD ◦ fS , where a small stack of shallow flow blocks with alternating
(left-to-right / right-to-left) masks maps x to intermediate latents u = fS(x), and a deep causal-Transformer
flow fD then maps u to the prior, producing z = fD(u). By the change-of-variables formula,

pθ(x) = p0(z)
∣∣det JfD (u)∣∣ ∣∣det JfS (x)∣∣, (3.1)

where p0 is a simple prior (e.g., standard Gaussian). Most capacity is allocated to the deep block fD for
semantic modeling, while the shallow stack fS handles local reshaping. For videos, we can simply treat all
frames as one long token sequence: fD follows a left-to-right causal order over the video (causal across frames,
raster order within each frame), and fS retains the alternating masks defined above. Because fS propagates
information from future frames to past ones, this naïve design yields a non-causal video generator, motivating
the global–local restructuring described next.

Global–Local Architecture Observing that fD is inherently autoregressive and that fS mainly provides
local refinements, we adapt the design into a global–local structure: fS is restricted to operate within each
frame, while only fD propagates global video context in a causal manner. More specifically, Equation (3.1)
can be re-expressed as an autoregressive factorization over frames xn:

pθ(x) =

N∏
n=1

pθ(xn | x<n) =

N∏
n=1

pD(un | u<n)
∣∣det JfS (xn)

∣∣, (3.2)

where un = fS(xn) denotes the local latents for frame xn. Here, the deep block is itself an autoregressive
flow, capturing both intra-frame raster ordering and inter-frame causal dependencies.

Formulating STARFlow-V in a global–local manner (Equation (3.2)) yields several benefits:

(a) Universality. Equation (3.2) preserves the universal approximation guarantee of STARFlow (Gu et al.,
2025): the local stack fS still realizes per-pixel infinite Gaussian mixtures via alternating causal masks,
so expressivity is not curtailed by restricting fS to within-frame contexts.

(b) Robustness. Intuitively, Equation (3.2) can be viewed as a continuous language model for videos:
the deep-flow term pD(un | u<n) acts as Gaussian Next-Token Prediction (cf. the affine form in Equa-
tion (2.2)) in latent space, while the shallow flow supplies the Jacobian factor |detJfS (xn)|, yielding a
flexible density over x. Compared to modeling x directly (arbitrarily multimodal), the latent u is uni-
modal at each step, easier to regress, and more tolerant to small prediction errors. Crucially, the sampling
phase via f−1

D conditions on previously generated latents rather than pixels, so data-space errors do not
propagate forward, mitigating the compounding error typical of autoregressive diffusion. Unlike diffusion-
style noise conditioning (Ho et al., 2022b; Chen et al., 2024a), which compromises information to gain
robustness and introduces extra parameters, our mappings u ↔ x are invertible, avoiding information
loss by construction.

(c) End-to-End Training. The whole model is still NF. Consequently, all parameters are trained by exact
MLE via the change-of-variables objective—no per-step denoising schedule or surrogate loss—simplifying
optimization and reducing train–test mismatch.

(d) Streamable Generation. At inference time, f−1
D samples un causally (token-by-token, frame-by-frame),

and f−1
S decodes each frame independently given un. This process enables causal video synthesis since

later frames cannot influence earlier ones.

3.2 Revisiting Noise-Augmented Training
As observed by Zhai et al. (2024), injecting small noise into the data is crucial for stabilizing NF training.
Concretely, we learn STARFlow-V on a σ-smoothed density qσ(x̃) = (p ∗N (0, σ2I))(x̃). A side effect is that
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Figure 2 An illustrated pipeline of STARFlow-V which shows (1) the proposed global-local architecture; (2) joint
training with the learnable denoiser with the proposed Flow-score Matching. During sampling, STARFlow-V takes
the encoded text condition t and transforms the noise z through deep global block to intermediate features u, followed
by several local shallow blocks to produce a slightly noised video. Finally, a learnable causal denoiser refines this output
into the final clean video x.

the model naturally generates slightly noisy samples, necessitating a post-processing step to recover the clean
ones. We first examined the existing options for this purpose:

(a) Decoder Fine-tuning We followed STARFlow (Gu et al., 2025), adopting their strategy of fine-tuning
the VAE decoder to denoise noisy latents using a GAN objective (Rombach et al., 2022). However, our
preliminary experiments suggest that this approach is not readily applicable to 3D causal VAEs: under
Gaussian-noised latent inputs, the decoder fails to maintain temporal consistency in the generated videos
due to limited receptive fields.

(b) Score-based Denoising Instead of decoder fine-tuning, TARFlow (Zhai et al., 2024) proposes to denoise
using the learned flow itself via score-based updates. For a noisy sample x̃ ∼ qσ, the continuity equation
gives ∂σx̃ = −σ∇x̃ log qσ(x̃). So for sufficiently small σ, a single Euler step yields the Tweedie estimator:

x ≈ x̃− σ ∂σx̃ = x̃+ σ2∇x̃ log qσ(x̃). (3.3)

With normalizing flows, we replace qσ by the learned density pθ, and compute ∇x̃ log pθ(x̃) via automatic
differentiation through the flow, which amounts to an additional forward–backward pass. However, this
score-based denoising presents two issues: (1) Noisy gradients. The learned density pθ is imperfect;
its score ∇x̃ log pθ(x̃) often contains high-frequency noise, which manifests as bright speckle-like arti-
facts—especially in regions with large motion; (2) Non-causality of the score. Even if pθ is modeled
causally, the score∇x̃ log pθ(x̃) is, by definition, global: the gradient at time n depends on likelihood terms
involving future frames m > n. This breaks causality, undermining the promised streamable generation.

Proposed Approach: Flow-Score Matching To address these issues, we introduce a lightweight neural
denoiser sϕ trained alongside the flow fθ to regress the model’s score:

Ldenoise(ϕ) = Ex, ϵ

∥∥ sϕ(x̃) − σ∇x̃ log pθ(x̃)
∥∥2
2
, x̃ = x+ ϵ, ϵ ∼ N (0, σ2I). (3.4)

At inference, we replace the raw score in the update (cf. Equation (3.3)) with the learned denoiser sϕ. This
flow-score matching (FSM) is simple yet effective. First, the smooth inductive bias of neural networks
suppresses stochastic high-frequency artifacts in ∇x̃ log pθ. Second, we can encode causality directly in sϕ, re-
ensuring streamable behavior. Concretely, we parameterize sϕ with a one–frame look-ahead while remaining
globally causal (one-step latency)1. We approximate the score at step n by sϕ(x̃≤n+1) ≈

(
σ∇x̃ log pθ(x̃)

)
n
.

1Strictly causal (≤ n) fails as temporal differences are pivotal to determining the denoising direction.
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Model Total Quality Semantic Aesthetic Object Multi Obj. Human Spatial Scene

Closed-source models
Gen-3 (Germanidis, 2024) 82.32 84.11 75.17 63.34 87.81 53.64 96.40 65.09 54.57
Veo3 (Google DeepMind, 2025) 85.06 85.70 82.49 63.81 93.89 82.20 99.40 84.26 57.43

Diffusion models
OpenSora-v1.1 (Zheng et al., 2024) 75.66 77.74 67.36 50.12 86.76 40.97 84.20 52.47 38.63
CogVideoX (Yang et al., 2024) 80.91 82.18 75.83 60.82 83.37 62.63 98.00 69.90 51.14
HunyuanVideo (Kong et al., 2024) 83.24 85.09 75.82 60.36 86.10 68.55 94.40 68.68 53.88
Wan2.1-T2V (Wan et al., 2025) 83.69 85.59 76.11 66.07 86.28 69.58 95.40 75.39 45.75

Autoregressive (Diffusion) models
CogVideo (Hong et al., 2022) 67.01 72.06 46.83 38.18 73.40 18.11 78.20 18.24 28.24
Emu3 (Wang et al., 2024b) 80.96 84.09 68.43 59.64 86.17 44.64 77.71 68.73 37.11
NOVA (Deng et al., 2024) 80.12 80.39 79.05 59.42 92.00 77.52 95.20 77.52 54.06
SkyReel-v2 (Chen et al., 2025) 83.90 84.70 80.80 - - - - - -
MAGI-1-distill (Teng et al., 2025) 77.92 80.98 65.68 62.43 82.37 35.08 84.20 57.75 26.28

Normalizing Flows
STARFlow-V (Ours) 78.67 80.24 72.37 54.48 86.65 53.48 94.00 49.84 47.08
STARFlow-V† (Ours) 79.70 80.76 75.43 59.73 80.61 56.04 98.13 76.08 48.21
STARFlow-V† (Ours, non-Causal) 79.22 80.34 74.71 58.70 81.08 54.60 98.40 73.15 49.61

Table 1 Text-to-video evaluation on VBench (Huang et al., 2024). The baseline data is from the leaderboard.
Following Yang et al. (2025), we also evaluate with the official GPT-augmented prompts (Rewriter), with longer and
more descriptive text inputs. † denotes results using Rewriter prompts.

Finally, we train sϕ jointly with fθ at minimal overhead: since fθ is trained by maximizing log pθ, we cache
the input gradients from the backward pass and reuse it as the target for sϕ.

3.3 Fast Inference
While STARFlow-V leverages parallel computation during training via causal masking, generation at inference
time is carried out sequentially (one token at a time) through multiple AF blocks, which can be extremely
computationally demanding for long video sequences. For instance, generating a 5s 480p video under 16 fps
using a pre-trained 3B parameter model requires over 30 minutes, which is far from real-time performance.
To enable fast inference, we introduce two strategies:

Block-wise Jacobi Iteration Rather than sampling continuous tokens strictly autoregressively, we accel-
erate inference by recasting inversion as solving a nonlinear fixed-point system with parallel solvers such as
Jacobi iteration (Porsching, 1969; Kelley, 1995), a strategy recently used to speed up autoregressive mod-
els (Song et al., 2021; Teng et al., 2024; Liu and Qin, 2025; Zhang et al., 2025). Specifically, the inverse of
Equation (2.2) can be written as the fixed-point equation

x = µθ(x⊙m) + σθ(x⊙m) · z, (3.5)

where m is a (self-exclusive) causal mask. This induces a triangular system that admits convergence under
nonlinear Jacobi iteration (Saad, 2003): starting from an initial sequence estimate x(0), iterate x(k+1) =
µθ(x

(k) ⊙ m) + σθ(x
(k) ⊙ m) · z until a converge criterion is satisfied. We monitor a scale-normalized

residual, ∥x(k+1) − x(k)∥22/∥x(k+1)∥22 < τ with τ = 0.001 by default. Although the worst-case iteration count
scales with sequence length (e.g., near-Markovian process), video generation exhibits strong global structure,
substantially accelerating convergence in practice. The procedure is also guidance-compatible, as proposed in
(Gu et al., 2025), which involves computing the guided parameters µ̂ and σ̂ and then substituting them.

To further accelerate sampling, we adopt a block-wise Jacobi scheme in the spirit of Song et al. (2021); Liu
and Qin (2025). The token sequence is partitioned into contiguous blocks of size B, which are processed
sequentially across blocks but in parallel within each block. Within each block we run the Jacobi updates,
while states from completed blocks are cached as context (e.g., KV cache) for subsequent blocks—analogous
to standard AR inference. We also apply a video-aware initialization: for a new frame, the initial estimate
x
(0)
n+1 is initialized from the previously converged frame x

(k)
n . Overall, we adopt block-based iteration within

each AF block, yielding ≈ 15× lower inference latency relative to standard autoregressive decoding, while
preserving visual fidelity.
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Figure 3 STARFlow-V comparison against baselines on autoregressive generation for both trained length (5s) and
long-horizon generation (30s). Please refer to more video comparison in the project page.

Pipelined Decoding As described in Section 3.1, the global–local design applies standard global left-to-right
autoregression in the deep block fD, while the shallow blocks fS traverse each frame independently. This
enables a pipelined schedule (analogous to pipeline parallelism (Huang et al., 2019)): fD runs continuously
without waiting on fS , and, in parallel, fS threads consume fD’s outputs, immediately refine them, and then
denoise. Because fD is typically the slowest stage, end-to-end latency is dominated by the deep block.

3.4 Versatility Across Tasks
STARFlow-V can be trained for different video generation tasks. By default, STARFlow-V is trained for
text-to-video generation on large-scale text–video pairs. Without modifying the backbone, we support the
following settings:

(a) Image-to-Video Generation. We directly treat the first frame as observed conditioning. Owing to
the invertiblity, no separate encoder is required : we encode the observed frame via the flow forward to
initialize the KV cache; subsequent frames are then generated.

(b) Video-to-Video Generation. Given a source clip x0:T , we treat all frames as observed conditioning
and—thanks to invertibility—use the same backbone to flow-encode them and populate the KV cache.
The model then autoregressively rolls out the target clip x̂0:T under optional task cues (e.g., in/outpainting
masks, edit text, camera/pose), copying through unedited regions while synthesizing edits. This mirrors
our image-to-video path but operates framewise over the whole clip without a separate encoder.

(c) Longer Generation. Our model generates videos far longer than those seen during training via a sliding-
window (chunk-to-chunk) schedule in the deep block. After producing a latent chunk u, we warm-start
the next step by rebuilding the KV cache: we re-run fD on the last ∆ latents (the overlap) and then
continue autoregression to synthesize the next N −∆ latents. fS then process the latents per frame,
enabling streaming output. To mitigate boundary mismatch, we randomly drop the first frame during
training to simulate restart.

4 Experiments

4.1 Experimental Setup
Datasets. We construct a diverse and high-quality collection of video datasets to train STARFlow-V. Specif-
ically, we leverage the high-quality subset of Panda (Chen et al., 2024b) mixed with an in-house stock video
dataset, with a total number of 70M text-video pairs. For all videos, we keep their raw captions, and apply a
video captioner (Wang et al., 2024a) to generate a longer description to cover the details. The ratio of training
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Figure 4 Comparison between speed and block size in block-wise Jacobi iteration.

using raw and synthetic captions during training is 1 : 9. Besides, following previous works (Lin et al., 2024),
we additionally include 400M text-image pairs for joint training. To support video-to-video generation and
editing, we additionally finetune the pretrained STARFlow-V on the Señorita (Zi et al., 2025), a large-scale
and high-quality instruction-based video editing dataset spanning 18 well-defined editing subcategories.

Evaluation. We perform both quantitative and qualitative evaluations on STARFlow-V, and compare
against baselines using VBench (Huang et al., 2024), which benchmarks text-to-video generation across 16
dimensions, including quality, semantics, temporal consistency, and spatial reasoning.

Model and Training Details. We adopt the 3D Causal VAE from WAN2.2 (Wan et al., 2025), which
compresses spatial dimensions by ×16 and the temporal dimension by ×4 into a 48-channel latent space. We
train progressively: we initialize from an image (single-frame) model, then scale to a 7B-parameter video
model by increasing the deep-block capacity. For resolution, we use a curriculum from 384p to 480p while
keeping the sequence length fixed at 81 frames. For the learnable denoiser, we used a 8-layer Transformer
with the same channel dimension as shallow block. We include more implementation details in Appendix.

Baselines. We compare with three baselines: (i) WAN-2.1 Causal, the autoregressive variant of WAN (Wan
et al., 2025) finetuned with the CausVid strategy (Yin et al., 2025); (ii) Self-Forcing (Huang et al., 2025),
finetuned from WAN-2.1 Causal-FT to mitigate train–test mismatch; and (iii) NOVA(Deng et al., 2024), a
native autoregressive diffusion model that does not rely on vector quantization. The orginal model predicts
in a chunk-based fashion. For fair comparisons, we also execute results in the pure AR settings. Besides, we
also report quantitative results on VBench with official scores.

4.2 Quantitative Results
Table 1 reports T2V results on VBench (Huang et al., 2024). While STARFlow-V does not yet match the
strongest diffusion-based video generators, it attains performance in the same range as recent causal diffusion
baselines, substantially narrowing the historical gap between NFs and diffusion models for video. To the best
of our knowledge, STARFlow-V is the first NF-based text-to-video model to reach this level of quality,
indicating that NFs can be a viable alternative when invertibility and exact likelihood (as shown in (Zhai
et al., 2024)) are desired. We also include a variant trained without local constraints; its VBench scores
remain very close to the causal version, indicating that enforcing causal structure does not incur a noticeable
loss in perceptual quality.

4.3 Qualitative Results
T2V & I2V Tasks As illustrated in Figure 1, STARFlow-V naturally supports both T2V and I2V generation.
The examples show that STARFlow-V produces temporally smooth and visually faithful sequences in both
settings. Importantly, both T2V and I2V results are obtained from the same model without additional tuning:
thanks to invertibility and causal modeling, the decoder can be reused as an encoder when a conditioning
image is provided.

V2V Tasks As shown in Figure 1, STARFlow-V handles diverse V2V tasks from object-level to dense
prediction within a single framework simply by changing the instruction. These results illustrate the potential
of using our NF-based model for general video editing and reasoning.
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Against Autoregressive Diffusion Models In Figure 3, we compare STARFlow-V with two represen-
tative autoregressive diffusion models. For the dog-with-sunglasses example, NOVA (Deng et al., 2024)
exhibits gradual blurring and loss of identity, while WAN 2.1-Causal FT shows strong artifacts and color
distortions. In contrast, STARFlow-V maintains clean, sharp, and temporally consistent frames, indicating
stronger robustness to exposure bias. The right block of Figure 3 further shows that STARFlow-V sustains
stable, coherent generations when extended to 30 seconds—well beyond its 5-second training horizon—where
NOVA (Deng et al., 2024) and Self-Forcing (Huang et al., 2025) suffer from blurring, color drift, and struc-
tural deformation. We further report quantitative metrics for evaluating drifting effects across baselines
and our model in the Appendix.

4.4 Ablation Study
Choice of Denoiser Figure 5 provides an ablation on the denoiser design. As shown in the top row,
Decoder-finetuning (Gu et al., 2025) tends to lose temporal consistency with noticeable frame-to-frame jitter,
while score-based denoising (Zhai et al., 2024) introduces bright speckle artifacts, especially in regions of large
motion. The quantitative comparison (bottom) further shows that our proposed flow–score matching achieves
substantially better video reconstruction under latent-space noise injection, outperforming both alternatives
by a clear margin.

Method PSNR↑ SSIM↑

No noise 32.22 0.8907

Decoder fine-tuning (Gu et al., 2025) 23.95 0.6403
Score-based denoising (Zhai et al., 2024) 22.05 0.6490
Flow-score matching (ours) 26.69 0.7601

Figure 5 Ablation study for the choice of denoiser. We com-
pare video VAE reconstruction quality across denoising ap-
proaches over 1, 000 random videos with large motions.

Hyper-parameters of Block-wise Jacobi It-
eration We analyze how the block size used in
the block-wise Jacobi Iteration influences the run-
time of the deep block. As shown in Figure 4 (left),
the runtime initially decreases as the block size in-
creases, reflecting better utilization of intra-block
parallelism, but then rises slightly again when the
block size becomes too large. This trend suggests
a trade-off: while larger block sizes increase paral-
lelism, excessively large blocks requires more iter-
ations within each block to achieve convergence.

We also examine the impact of video-aware initial-
ization on runtime. As illustrated in Figure 4 (left),
initializing the first Jacobi iteration of each frame
using the converged state from the previous frame
substantially reduces runtime across almost all block sizes except for small block sizes. This improvement
likely stems from the strong temporal coherence present in natural videos, where neighboring frames provide
effective warm starts that appear to facilitate faster iterative updates. Overall, video-aware initialization
leads to observed improvements across block sizes.

We further analyze the runtime breakdown across latent frames in Figure 4 (right). Video-aware initialization
yields the largest gains for large block sizes after the first frame, where convergence would otherwise require
many more inner steps. Based on this observation, we adopt an asymmetric default strategy: use a medium
block size (e.g., 64) for the first frame, and a larger block size (e.g., 512) for subsequent frames with video-
aware initialization.

5 Conclusion and Limitations

We presented STARFlow-V, an end-to-end video generative model based on autoregressive normalizing flows.
As shown experimentally, STARFlow-V delivers strong long-horizon coherence and fine-grained controllability
across text-to-video, image-to-video and video-to-video tasks, and shows consistent gains over autoregressive
diffusion baselines at 480p/81f. As a bonus, STARFlow-V can be used natively for likelihood estimation.

While the results are encouraging, there are still limitations to overcome. (1) Latency. Despite the proposed
accelerated sampling, inference remains far from real time on commodity GPUs. (2) Data quality and scaling.
Progress is bounded by dataset noise and bias; we do not observe a clean scaling law under current curation.
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Figure 6 Failure cases of generation from STARFlow-V.

(3) Non-physical generation. Due to the cur-
rent model scale and available data, we still ob-
serve many unrealistic, non-physical generations
(see Figure 6), such as an octopus passing through
the wall of a jar and a rock spontaneously appear-
ing beneath a goat just as it lands.

Looking forward, we see several promising direc-
tions. First, we aim to reduce generation latency,
for example through more efficient sampling sched-
ules and architectural optimizations. Second, we
plan to study distillation and pruning to obtain
compact student models that retain most of the performance of the full system. Third, we will revisit dataset
curation and active data selection, with a particular focus on challenging, large-motion sequences and physi-
cally grounded scenarios; this is crucial for improving physical plausibility, reducing non-physical failure cases,
and enabling clearer scaling behavior at higher fidelity.
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A Derivations and Algorithms

A.1 Derivation of STARFlow-V.
(1)Why an autoregressiveGaussianmodel inu is a normalizing flow. Let Tθ : u 7→ z be the triangular autoregres-
sive map applied by the deep block fD (within a frame and across frames in the global order). For token
index i in that order,

zi =
ui − µθ(u<i)

σθ(u<i)
, σθ(·) > 0, (A.1)

with inverse
ui = σθ(u<i) zi + µθ(u<i). (A.2)

Because each zi depends only on (u1, . . . ,ui) and σθ > 0, Tθ is bijective and continuously differentiable. The
Jacobian is lower triangular with diagonal entries ∂zi/∂ui = 1/σθ(u<i), thus

log
∣∣det JTθ

(u)
∣∣ = −∑

i

log σθ(u<i). (A.3)

With a standard normal prior p0(z) =
∏

iN (zi; 0, I),

log pD(u) = log p0
(
Tθ(u)

)
+ log

∣∣det JTθ
(u)

∣∣ = − 1
2

∑
i

z2
i −

∑
i

log σθ(u<i) + const, (A.4)

which is essentially the regression objective through maximum likelihood estimation over u. Therefore, the
deep block realizes a valid normalizing flow. Composing with the shallow block gives fθ = fD ◦ fS and yields
the data density in Equation (3.1).

(2) Howwe get the autoregressive distribution. From the global–local factorization (Equation (3.2)),

pθ(x) =

N∏
n=1

pD(un | u<n)
∣∣det JfS (xn)

∣∣, un = fS(xn). (A.5)

Within a frame n, index tokens k = 1, . . . , HW ·D in raster (or block) order and we have Equation (A.4)
which models pD as Gaussian. The shallow-block contributes the additional log–det

∑
n log |det JfS (xn)|,

forming an expressive distribution.

(3) Noise & denoising: what themodel looks like. Following the noise-augmented training (§3.2), let x̃ = x+ σϵ,
ϵ ∼ N (0, I). The Tweedie single-step denoiser in the flow setting (Equation (3.3)) suggests the update
x ≈ x̃ + σ2∇x̃ log pθ(x̃). To avoid high-frequency artifacts and to preserve streamability, we fit a causal
denoiser sϕ via flow-score matching (Equation (3.4)) and then use

x̂ = x̃ + σ sϕ(x̃) ≈ x̃ + σ2∇x̃ log pθ(x̃), (A.6)

where sϕ uses a block-causal mask with at most one-frame look-ahead to retain strict streamability.
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Algorithm 1 Training STARFlow-V with noise augmentation and flow-score matching
Require: video dataset D; noise level σ; FSM weight λden
1: repeat
2: Sample mini-batch x ∼ D and noise ϵ ∼ N (0, I)
3: Noise-augment: x̃← x+ σ ϵ ▷ as in §3.2
4: Shallow forward: u← fS(x̃) ▷ alternating masked AF blocks, within-frame
5: Deep forward: z ← fD(u) ▷ causal Transformer AF over global order
6: Standard NF NLL: LNLL(θ)← −

[
log p0(z) + log | detJfD (u)|| detJfS (x̃)|

]
7: Score target (stop-grad): t← σ∇x̃ log pθ(x̃) ▷ reuse backward pass of LNLL; detach
8: Flow-score Matching: LFSM(ϕ)← ∥ sϕ(x̃)− t ∥22
9: Total loss: L ← LNLL(θ) + λden LFSM(ϕ)

10: Update: (θ, ϕ)← (θ, ϕ)− η∇L
11: until convergence

Algorithm 2 Autoregressive sampling (z→u→x)

Require: length N (frames or tokens), base prior p0(z) = N (0, I), shallow inverse f−1
S , deep inverse f−1

D ,
token order ≺

1: Sample z ∼ N (0, I) with the target shape
2: Initialize an empty latent sequence u
3: for each element i in global order ≺ do ▷ causal AR over frames and within-frame tokens
4: Compute (µi, σi): (µi, σi)←fD

(
u<i

)
5: Invert deep at position i: ui ← σi zi + µi ▷ f−1

D , triangular
6: end for
7: Invert shallow block: x← f−1

S (u)
8: (One-step corrector) x← x+ σtest sϕ(x)
9: return x

A.2 Training
Algorithm 1 shows the training algorithm of STARFlow-V for both the flow and the learnable denoiser.

A.3 Inference
Remarks. (i) When the deep map is sufficiently contractive in u (e.g., via scale clamping), the Jacobi iteration
converges rapidly and enables wide parallelism within each block B. (ii) A common choice for B is to use
spatial tiles per frame (no intra-tile dependencies) or even/odd raster groups, preserving the block-causal
mask used in training.

B Implementation Details

B.1 Architecture Design

3B 7B

Params ∼3B ∼7B
fD width 3072 4096
fS identical (alt. masked AF; width dS , depth LS)
Denoiser sϕ 8-layer Transformer, block-causal mask
Init from scratch finetune from 3B

Table 2 Minimal comparison. Only fD width differs; fS and sϕ are unchanged.

3B. Same size as STARFlow but for video. The deep block fD uses width 3072 (depth LD, heads HD). The
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Algorithm 3 Jacobi-style parallel inversion of the deep autoregressive block

Require: base latent z; initial guess u(0) (e.g., zeros); block partition B = {B1, . . . , BJ} (non-overlapping,
block-causal, |Bj | = 4|B1| for all block j > 1); max iters T ; Frame size F ; tolerance τ

1: for j = 1, 2, . . . , J do
2: [a, b]← Bj ▷ indices of the j-th block
3: if j = 1 and a > F then
4: Initialize ua:b ← u

(0)
a:b ▷ random initialization

5: else
6: Initialize ua:b ← ua−F :b−F ▷ initialization from past frame
7: end if
8: repeat
9: t← t+ 1

10: for all i ∈ Bj in parallel do
11: (µ

(t)
i , σ

(t)
i )← fD

(
u
(t)
<i

)
12: u

(t+1)
i ← σ

(t)
i zi + µ

(t)
i

13: end for
14: until ∥u(t+1)−u(t)∥2

∥u(t)∥2+ε
≤ τ or t = T

15: ua:b ← u
(t)
a:b

16: end for
17: Shallow inverse: x← f−1

S

(
u(t+1)

)
18: (One-step corrector) x← x+ σtest sϕ(x)
19: return x

shallow stack fS (alternating masked affine flows) and the denoiser sϕ (8-layer Transformer with block-causal
mask) follow the standard design.

7B. Initialized from the 3B checkpoint and only widens the deep block fD channels from 3072 to 4096. The
shallow stack fS and denoiser sϕ remain identical (same depths, heads, and widths).

B.2 Training Details
STARFlow-V is trained on 96 H100 GPUs using approximately 20 million videos. In all the experiments, we
share the following training configuration for our proposed STARFlow-V.

training config:
batch_size=96
optimizer='AdamW'
adam_beta1=0.9
adam_beta2=0.95
adam_eps=1e-8
learning_rate=5e-5
min_learning_rate=1e-6
learning_rate_schedule=cosine
weight_decay=1e-4
mixed_precision_training=bf16

Progressive Video Training We adopt a progressive multi-stage training paradigm that gradually increases
model size, resolution, and temporal horizon for stable and effective optimization.

• 3B Text-to-Image Training: We initialize a 3B text-to-image model from the pretrained StarFlow (Gu
et al., 2025), establishing a strong visual–textual backbone before introducing temporal modeling.

• 3B Image-Video Joint Training (384P, 45 frames): The 3B model is then jointly trained on
low-resolution images and videos at 384P. Each training clip contains 45 frames sampled at 16 fps,
enabling the model to acquire short-term temporal dynamics.
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Algorithm 4 Streaming long-sequence generation via re-encode with forward

Require: target length T (frames), window size W (W≪T ); deep inverse f−1
D ; shallow inverse f−1

S ; shallow
forward fS ; deep forward fD; prior p0(z)

1: Initialize caches KV← ∅, latent buffer U← ∅
2: for t = 1 to T do
3: Sample base: zt ∼ N (0, I) for the next frame (or token block)
4: Deep inverse: using cached state, compute ut ← f−1

D (zt ; KV) and update the KV cache.
5: Shallow inverse: xt ← f−1

S (ut)
6: Emit xt

7: Re-encode (forward): ût ← fS(xt) ▷ brings the produced frame back to U -space
8: Update deep state: run fD forward on ût to refresh KV (no sampling): _← fD(ût;KV)
9: Maintain sliding window: push ût into buffer U; if |U| > W pop the oldest

10: end for
11: return {xt}Tt=1

• 7B Image-Video Joint Training (384P, 81 frames): We expand the model to 7B parameters
and continue joint training at 384P, doubling the temporal horizon from 45 to 81 frames to strengthen
long-range temporal reasoning.

• 7B Image-Video Joint Training (480P, 81 frames): Finally, we train the 7B model on higher-
resolution 480P images and videos while maintaining the 81-frame temporal window.

Mixed-Resolution Training STARFlow-V is designed to support mixed-resolution inputs, allowing each frame
to retain its native aspect ratio and spatial resolution. Similar to Gu et al. (2025), we assign each video
sequence to one of nine predefined aspect-ratio bins, since all frames within a video share the same ratio.
The pre-defined bins are 21:9, 16:9, 3:2, 5:4, 1:1, 4:5, 2:3, 9:16, and 9:21. To make the model explicitly aware
of these visual formats, we incorporate both the fps and aspect-ratio tag into the text caption:

A video with {fps} fps:
{original_caption}
in a {aspect_ratio} aspect ratio.

Gradient Control We monitor the gradient norm throughout training to ensure stability. Specifically, to
prevent gradient explosion, we enable gradient skipping after the first 100 steps: if the gradient norm exceeds
a threshold of 1, the update for that step is skipped. This adaptive strategy stabilizes early training while
maintaining convergence efficiency later on.

B.3 Baseline Details
WAN-2.1 Causal-FT is the autoregressive variant of WAN (Wan et al., 2025). Specifically, we adopt Wan2.1-
T2V-1.3B, a Flow Matching–based model, as the base model. Following the CausVid initialization strat-
egy (Yin et al., 2025), the base model is fine-tuned with causal attention masking on 16k ODE solution pairs
generated from the model itself. In practice, we leverage the ODE initialization checkpoint released with the
official Self-Forcing (Huang et al., 2025) repository, which corresponds exactly to the configuration of our
WAN-2.1 Causal-FT setup.

NOVA AR (Deng et al., 2024) is an autoregressive video generator that does not rely on vector quantization.
It reformulates video generation as non-quantized autoregressive modeling that performs temporal frame-by-
frame prediction while generating spatial token sets within each frame in a flexible, set-by-set manner. To
support autoregressive modeling with continuous tokens, NOVA leverages a lightweight diffusion head that
models the distribution of each continuous token (Li et al., 2024). In this work, we directly compare the pure
AR version of NOVA, where the model predicts each latent frame with diffusion for a fair comparison.
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Model Total Quality Semantic Aesthetic Object Human Spatial Scene

Autoregressive (Diffusion) models
NOVA AR† (Deng et al., 2024) 75.31 77.46 66.70 56.04 79.68 94.20 66.07 47.83
WAN 2.1-Causal FT† 74.96 77.41 65.15 56.04 76.51 94.20 53.25 47.83

Normalizing Flows
STARFlow-V† (Ours) 79.70 80.76 75.43 59.73 80.61 98.13 76.08 48.21

Table 3 Performance comparison of autoregressive video generation models on VBench (Huang et al.,
2024). Following Yang et al. (2025), we evaluate with the official GPT-augmented prompts (noted as †)

Figure 7 Generated samples from STARFlow-V given text prompts. All videos are at 480p 16fps and 5s.

C Additional Experimental Details and Results

C.1 Quantitative Comparisonwith Autoregressive Diffusion baselines
To evaluate the robustness of video generation under autoregressive generation, we compare STARFlow-V
with autoregressive diffusion models, including NOVA AR (Deng et al., 2024) and WAN 2.1-Causal FT. Here,
NOVA AR refers to the fully autoregressive video generation variant which is different from the reported in
the official paper. Table 3 compares these models across a diverse set of evaluation dimensions defined in
VBench (Huang et al., 2024). As shown in Table 3, STARFlow-V substantially outperforms the autoregressive
diffusion baselines across all dimensions. Both NOVA AR and WAN 2.1-Causal FT exhibit clear signs of
autoregressive degradation in their generated videos. Specifically, NOVA AR suffers from pronounced error
accumulation, leading to increasing blur and content collapse as the video progresses. And WAN 2.1-Causal
FT produces noticeable temporal inconsistency and flickering throughout the video. These failure modes are
reflected in their lower scores, underscoring the difficulty of maintaining robustness in autoregressive video
generation. And it further highlights the strength of our approach.
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Figure 8 Generated samples from STARFlow-V given the first frame. All videos are at 480p 16fps and 5s.

C.2 Video-to-Video Generation
To support video-to-video generation and editing, we additionally finetune the pretrained STARFlow-V (7B,
384P, 81 frames) on the Señorita (Zi et al., 2025), a large-scale and high-quality instruction-based video
editing dataset spanning 18 well-defined editing subcategories. Each training sample in Señorita consists of
a 33-frame input video paired with a 33-frame edited target video. The model is also trained on videos with
16fps. This finetuning stage equips STARFlow-V with precise editing capabilities while preserving temporal
coherence and motion consistency. During finetuning, we concatenate the input and target videos along the
temporal dimension to form a single training sequence.

C.3 Additional Samples
We show additional samples at Figures 7 to 9. Besides, we provide more video generation comparison in our
official codebase at https://github.com/apple/ml-starflow.

Apple and the Apple logo are trademarks of Apple Inc., registered in the U.S. and other countries and regions.

20

https://github.com/apple/ml-starflow


Figure 9 Generated samples from STARFlow-V given text prompts and extended with overlapping frames. For each
segment, we generate 21 latent frames with 4 latent frames in overlap. Both videos are at 480p 16fps.
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